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Abstract. The classicalcalculation of the Bloch wall mobility, basedon the Landau-Lifschitz- 
Gilbert equation, leads to a result which is 1000 times larger than the experimental value 
found for very pure yttrium iron garnet. We criticize this approach and propose a novel 
mechanism. It is argued that the non-zero transverse magnetization of the wall induces a 
magnetic back-flow around the wall, and hence a drag force proportional to the velocity. A 
correct order of magnitude of the mobility is obtained if one assumes that the intrinsic 
relaxation times of the medium are very different for high frequencies (where resonance 
experiments are performed) and low frequencies, relevant to the wall motion. 

1. Introduction 

There exists quite a vast body of experimental results on the domain wall mobility in 
ferromagnets, resulting from many years of investigation. In conducting ferromagnets, 
the domain wall motion is damped by eddy current losses and hence its mobility can be 
expressed in terms of the conductivity of the material (Williams et a1 1950) and good 
agreement with experimental data is achieved. In insulating ferromagnets, such as 
ferrites, spinels or garnets, coupling between the spin degrees of freedom and all the 
other degrees of freedom (the thermal bath) is much more indirect, in particular if the 
material is (nearly) impurity and defect free. A possible quantitative measure of this 
coupling is provided by the width AH of the ferromagnetic resonance line which gives 
the relaxation time t - l  = y AH for uniform Larmor precession of the spins around the 
total magnetic field, at the frequency w, = yH ( y  is the gyromagnetic ratio). With this 
information, the classical way of estimating the mobility of a domain wall is the following: 
the evolution of each spin S is assumed to be described by the Landau-Lifschitz-Gilbert 
(LLG) equation 

as/at = yS x H - ( y m S / S )  x ( S  x H )  

where the first term describes the Larmor precession and the second term is a phenom- 
enological damping term which conserves 1 SI2. H is the total field acting on S ,  including 
in particular the exchange field and the anisotropy field. For zero external field, the 
stationary solution of this equation with S = S ( x )  and S(  +w) = +Sz leads to a domain 
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wall magnetization profile of width 6. For non-zero external field Ho, one can find a 
travelling solution S = S(x  - Vt) (no Bloch lines) with 

V = 6 y H o / a .  

Assuming a constant, independent of the total field H ,  one obtains a linear relation 
between V and Ho characterized by a mobility p = 6y /a .  Solving LLG in the ferro- 
magnetic resonance situation leads to a = AH/2H, which allows one to compare line- 
width measurements with domain wall mobility. Experimentally, the situation is as 
follows: if damping is ‘high’ ( a 5 0. l ) ,  due to the presence of strongly coupled impurities, 
this relation is qualitatively correct, i.e. ~ , / c Y A H  = 1. If the damping is weak, in particular 
in pure single-crystal yttrium iron garnet (YIG), many experiments (Hagedorn and 
Gyorgy 1961, Harper and Teale 1969, Vella-Colleiro et a1 1972, Guyot et a1 1988) (see 
in particular Teale (1980) where a clear discussion of the problem is given) have shown 
that a P / a A H  -‘I lOOO! (The mobility is of the order of 30 m s-l Oe-’.) This obviously 
shows that a better theory of domain wall mobility is lacking, since experiments on 
YIG are very ‘clean’ and well controlled. The following ways to remedy this may be 
considered. 

(i) It is well known that the presence of Bloch lines drastically reduces the mobility. 
For a domain wall with a typical distance between Bloch lines equal to g, the reduction 
factor is (see, e.g., Eschenfelder 1982, and references therein) about a2(2j/SB), where 
dB is the width of a Bloch line. In order to obtain the correct mobility, the distance 
between Bloch lines should thus be of the order of 10 cm: hence, the number of Bloch 
lines present should be less than 1! Furthermore, the transverse velocity of Bloch lines 
can be shown to be 1/a times the velocity of the wall; the very few Bloch lines present 
would thus quickly reach the edge of the sample. This would hence lead to a very 
intermittent overall wall motion, with ‘fast’ periods occurring during a time of the order 
of the nucleation time of a Bloch line, separated by short ‘bursts’ of slower velocity. 

We rather believe that the Bloch lines are quite numerous to reduce the magnetostatic 
energy of the wall, but also quite strongly interacting so as to make the network of Bloch 
lines solid or glassy. We thus suggest that Bloch lines are essentially immobile and do 
not participate directly in the energy dissipationt. 

(ii) a may change appreciably from low frequencies (where mobility measurements 
are usually performed) to high frequencies (ferromagnetic resonance at around 
10 GHz). This possibility was also ruled out by Teale, who was able to drive the wall 
sufficiently fast that the frequencies involved in its motion (about V / 6 )  were of the order 
of 1 GHz, with no sign that the mobility increases rapidly. From a theoretical point of 
view, however, there is no microscopic justification for a constant a# (t can indeed be 
calculated in some cases (Haas and Callen 1963) and is generally not found to behave as 
H-’, as would require a constant a). It would be in fact quite natural to think in terms 
of a relaxation time, i.e. to write the damping part of the LLG equation as 

( t - ’ / S H ) S  x ( S  x H )  

and to suppose rather that, for weak fields, t approaches a constant. This would not lead 
to a linear relation between V and Ho.  Hence, in our view, the hypothesis of a ‘fluid’ 

t They are, however, important in determining the magnetic field created by the wall-see below. 
$ See, however, the very recent paper of Plefka (1990), where a Langevin theory of the LLG equation is 
constructed. 
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damping (energy dissipation proportional to (us2), and hence the very existence of a 
domain wall mobility in this approach is quite ad hoc. 

(iii) The LLG equation is phenomenological in nature; it is based on the fact that the 
magnitude of the spin is fixed by the competition between exchange energy and entropy, 
which are characterized by energies much larger than those involved in the dynamical 
processes studied here. Hence 1 S I is essentially locked onto its thermal equilibrium 
value. The damping term must thus be orthogonal to S and must be zero for S 1 1  H .  One 
could generalize LLG, in the spirit of phenomenological approaches, and write? 

z-l 

at  SH 
-- as(r7 t, - y S ( r ,  t )  x H ( r ,  t )  - -S(r7 t )  

It is obvious that the LLG equation is recovered for K ( u ,  U )  - 6(u)6(u) .  If one takes 
a kernel local in time and decaying fast in space, one will add to the LLG damping term 
an ‘inhomogeneous damping’ contribution of the form 

(D,/SH)S x (v2s x H )  (2) 
with D, having the dimensions of a diffusion constant. For the magnetization profile 
inside a domain wall, one has I V2S I SS-’, and hence the effective inverse relaxation 
time is (see also Bar’yakthar (1984)) t-’ + D, , ,E2 .  Taking D, = Ja2 with J a charac- 
teristic exchange frequency, one finds that (with 6 = 100a) D,6-’ = 1 GHz (leading 
indeed to the correct order of magnitude for the mobility), while the homogeneous 
relaxation time is (in YIG) about 1 MHz. This shows that ‘inhomogeneous damping’ 
could be dominant in situations where magnetization varies quickly, as in a domain wall. 
However, one still should assume an H-dependent D, = constant H in order to obtain 
a linear relation between V and H; furthermore it is difficult to give a serious order of 
magnitude of what appears as a new phenomenological parameter. Note that this 
approach predicts a mobility diverging as a3  as the Curie temperature is approached. 

The possibility that we shall explore in this paper is that the mechanism slowing 
down the domain wall motion and that governing the ferromagnetic resonance have a 
fundamentally different origin when the intrinsic damping is smallf . A very important 
feature of the Bloch domain walls is that they have a net magnetization in the plane of 
the wall, which creates a demagnetizing field and polarizes its surroundings. Bloch lines 
break up the wall into ‘domains’ to reduce the magnetostatic energy and thus determine 
the precise structure of the magnetic field around the wall. 

When the wall is moving, the polarization cloud is asymmetrical and imposes a 
viscous drag (proportional to the velocity for small V ) ;  the ‘charge’ is attracted by its 
image (the ‘Narcissus effect’). The back-flow mechanism that we propose for domain 
wall mobility is thus exactly the same as the slowing down of a charged particle in a 

+ After this paper was accepted, our attention was brought to the work of Bar’yakthar (1984) (see also 
Dorman and Sokolev (1988)), where this idea has already been explicitly investigated. In particular, the wall 
mobility is shown to be reduced by a factor 1 + tD,/3S2 (see equation ( 2 )  below). 
$ This is also the point of view taken by Thiele and Asselin (1984) who propose that spin waves localized in 
the Bloch wall are generated when the wall sweeps an impurity. This leads to a specific energy dissipation, 
which contributes both to the coercivity and to the wall mobility. It is. however, difficult to extract from these 
calculations (which are only briefly sketched by Thiele and Asselin) an actual order of magnitude of the 
mobility of very pure samples, where this mechanism is apriori not expected to be very efficient. 
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dielectric medium (see e.g., Landau and Lifschitz 1985) or the mobility of grain bound- 
aries interacting with solute atoms. It is similar in spirit to the qualitative idea of a 
‘magnetic wake’ left behind by the wall expressed by Hagedorn and Gyorgy (1961). We 
obtain, using known information about the samples considered, an estimate of the 
mobility which compares quite favourably with experiments. This approach also suggests 
that the mobility measured in AC experiments should increase with increasing frequency 
and that the mobility should be much higher for Nee1 walls in films, where the net 
magnetization is perpendicular to the wall and which does not leave a magnetic trace. 
This is indeed the case in YIG films, where the mobility is quite well estimated by the LLG 
equations (de Leeuw et aZl980, p 774). 

2. Model and theoretical results 

The problem can be cast in a quite general form. Assume a ‘particle’-which can be 
an electric charge, a domain wall, a grain boundary, etc-immersed in a polarizable 
medium, characterized by an internal variable (electric or magnetic polarization, con- 
centration, stress, etc) denoted by q ( r ,  t). The particle creates a polarizing field h(r ,  t) = 
K S ( T  - r(t)), to which the medium responds as 

d 4 ,  w )  = x(4 ,  w ) h ( q ,  0) (3) 
where Fourier transforms have been introduced. 

Assuming that the particle has a uniform motion r = Vt, it is easy to show that the 
viscous drag imposed by the polarization cloud is given by (see, e.g. Landau and Lifschitz 
(1985) and Pines and Nozikres (1966) for similar calculations): 

where xo = x(0,O) and z:esidues+. denotes the sum over all residues at the poles in the 
upper and lower half-q-planes, respectively. 

In the case of a medium in which q diffuses with a diffusion constant D and is damped 
at a rate t - l ,  one has 

x(q ,  w )  = x o [ l / ( D q 2 t  + iwt  + I)]. 

F d r a g  = (K2xO/4m>v V/pdrag .  ( 6 )  

( 5 )  
In the limit of small velocities (V < V* = 22/02-’), one finds that? 

The mobility of the object is then obtained by writing V = pintr (F - Fdrag)  where pintr 
takes into account other sources of dissipation. Hence p-’ = p;tr + p& = for 
small intrinsic dissipation. 

It is in fact helpful for physical applications to write the expression of the drag force 
for a more general law of motionx(t), without assuming a constant velocity V.  This reads 

7 A similar expression can be found in the work of de Gennes (1988), where the influence of a polarizable 
solvent on the conductivity of stretched polymers is studied. 
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in which each term is quite easy to interpret physically. Equation (7) reproduces the 
above result (6) for constant velocities. This expression will allow us to estimate the order 
of magnitude of the drag force in more complex situations (see below). 

The problem that we consider here is slightly more complicated since spin waues can 
propagate in the medium. The susceptibility of polarized ferrimagnets is given by 

~ ( q ,  o) = y 4 n ~ , [ ~ , ( q )  + (iw + t - ' ) t - ' / H , ( q ) ] / [ H ~ ( q )  + t-2 - w 2  + 2iwz-']. 
(8) 

M ,  is the saturation magnetization, and H,(q) = H :  + Dq2 where H :  is the anisotropy 
field (multiplied by y ) .  t = t(q, U) is the intrinsic relaxation time of the medium, which 
may depend on both the wavevector and the frequency (e.g. the linewidth of the 
ferromagnetic resonance line is obtained with q = 0, w = y H ) .  We shall define the low- 
frequency relaxation time as to = (d/n/o, 0) with Q = -\/s-* + H:*; the analysis of 
equation ( 5 )  withX(q, w )  given by (8) indeed reveals that Q is the characteristic frequency 
separating the low- and high-frequencKegimes. 

For small velocities V < V* = 2 d D Q ,  equation ( 5 )  leads to the following results. 

(i) If ti' 9 H : ,  then the mobility determined by the magnetic drag is equal to the 
value determined above in equation (6) (up to a numerical factor). 

, I , _  

(ii) If on the contrary i f '  e H : ,  then the mobility is enhanced by a factor m. 
The 'coupling' constant K measuring the field created by the wall is of the order of 

64nM,. As the static susceptibility is M,/H,  9 1 for most ferrites, the local response to 
this field is H = 4nM, (saturation) and not ~ ~ 4 n M , .  Hence, the drag force in this 
strong-coupling case is a factor xo smaller than that given above. Moreover, the above 
calculation only makes sense if the diffusion length d/Dz is small compared with the 
screening length 6 (due to Bloch lines within the wall). In the opposite case, the integral 
of equation (7) must be cut at t,,, = C2/D. 

The 'diffusion constant' is related through the spin-wave stiffness and hence the 
Curie temperature through 

D - l a 2  - ( T,/h)a2 (9) 

(a is the lattice spacing). Note that usually the domain wall mobility is rather defined as 
V = p H o  where H o  is the external field, corresponding to a force (per square unit of the 
wall) F = M,Ho. 

The non-zero thickness 6 of the domain wall has been completely ignored in the 
above analysis. This is justified as long as 6 is much smaller that the diffusion length 
vzpz. 

3. Comparison with experiments 

Detailed com arison with experiment is made difficult because no direct measurement 
of t-'(d, 0) is available. However, a detailed theory of the 'initial' susceptibility 
of ferrites has recently been proposed (Bouchaud and Zerah l989,1990a, b); this allows 
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us to reach ~ ~ ( 0 ,  H i ) ,  which is systematically found to be? t-' = H: = 10-102 MHz. 
From the above discussion, one has 

For YIG (Teale 1980), one has H: = 100 MHz (at room temperature). We take 
J = 5 x 1013 Hz (Tc  = 500 K), 6 = 100a (a  = 12.8 A) and 4 n M ,  = 2000 G .  Choosing 
t = lo-* s ,  one finds that p = 4 m s-' Oe-', which is only one order of magnitude 
smaller than the value of 30 m s-l Oe-' determined by Teale (see below). If t is a 
factor of 10 larger, the enhancement factor mentioned above leads to the 
correct order of magnitude for p. 

At this stage, we want to emphasize one point: experiments (Vella-Coleiro eta1 1972, 
Teale 1980, Guyot et a1 1988) show that the domain wall mobility is nearly composition 
independent and in particular is not related to the ferrimagnetic linewidth. For example, 
walls in pure YIG and ytterbium-doped YIG have the same mobility, while the linewidth 
is 100 times larger in the latter case. In order to reproduce this fact, the relaxation time 
at a small frequency t(d\/S2/D, QV/V*) must not be dramatically dependent upon 
composition (in particular substitution) and should be quite different from its high- 
frequency counterpart. This would need a better experimental check than that based on 
the analysis of Bouchaud and ZCrah (1989,1990a7 b). 

p - ~ ( u ~ / s ~ ) ~ \ / J ~ ( ~ / Y ~ ~ G M ~ ) J u .  (10) 

3.1. Domain of validity of the above estimate 

above which the mobility should start to depart from the 
linear regime is V* - 2&, i.e. 140 m s-'. This is consistent with the data of Teale 
(1980). 

(ii) The diffusion length ld = v/ot is of the order of 1000a. It is thus justified to 
neglect the wall width compared with &. However, the assumption Id  < E might not be 
correct. If this inequality is not satisfied, the above estimate for p must be multiplied by 
a factor & / E .  We are not aware of any estimate of 6 for the samples considered. 

(iii) The characteristic frequency is H:(V/V*),  i.e. 100 MHz for V = 140 m s-l (top 
of the linear regime). We are thus always in the 'low-frequency' regime as far as the 
estimate of t is concerned; to probe frequencies such as 10 GHz (usual ferrimagnetic 
resonance experiments), one would need to go to velocities as high as lo4 m s-'. Hence 
our theory posssibly explains why the high-velocity experiments of Teale are not related 
to the ferrimagnetic resonance linewidth: the relevant frequency is not V/6 but 

(iv) We have been primarily concerned with steady-state determinations of the 
mobility, i.e. experiments done with a constant external field. If the wall is driven by an 
oscillating field H exp(iot), equation (7) for the drag force immediately shows that the 
mobility is frequency independent for o < t-' and grows as dz for higher frequencies. 

(v) If the value of the intrinsic dissipation parameter (Y is sufficiently large, then the 
classical formula for the domain wall mobility should be valid, since 
p-l = p;:, + pd;lag. This occurs roughly when (Y > 0.01. 

(i) The 'critical velocit 

H: ( v/ v * ) . 

4. Conclusion 

We have thus proposed and analysed a mechanism of 'magnetic back-flow' for domain 
wall friction. It is based on a very general effect that a moving defect in a polarizable 

t On depolarized samples of NiZn, MnZn and YIG ferrites. 
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medium creates an asymmetric polarization cloud around itself which leads, under mild 
assumptions about the intrinsic relaxation of the medium, to a drag force directly 
proportional to the velocity. For a magnetic domain wall, we argue that the polarizing 
field is due to the local transverse magnetization of the wall. Our treatment of this 
magnetostatic problem is not very elaborate and we only claim to obtain an order of 
magnitude of the wall’s mobility. Then, an important physical statement (suggested by 
mobility experiments themselves) must be made concerning the intrinsic relaxation time 
of the medium. Traditionally, strictly following the Landau-Lifschitz phenomenological 
approach, this relaxation time is taken to be inversely proportional to the operating 
frequency, the proportionality constant being fixed by the ferrimagnetic linewidth. We 
take a completely different standpoint, corroborated by low-frequency experiments on 
demagnetized samples (Bouchaud and ZCrah 1989, 1990a, b), as we think that this 
relaxation time does not diverge for small frequencies but instead is of the order of the 
frequency of the anisotropy field: the relaxation mechanism involved at high frequencies 
has no reason to be the same as the low-frequency one (Haas and Callen 1963). 

The existence of these two very different relaxation times should, however, be 
directly confirmed experimentally; a more detailed comparison of our theory with 
experiments? needs an independent evaluation of t, but also of the screening length 5 
associated with the Bloch lines. Furthermore, the assumption of immobile Bloch lines 
could be criticized. 

Finally, there is yet another unexplained fact revealed by experiments on clean YIG 
single crystals, which is the presence of a (very low) threshold field below which the wall 
does not move. The velocity appears to be non-zero just above threshold. One possibility 
could be the pinning of the domain wall to the dislocations (this could lead to interesting 
magnetomechanical effects). If this is the case, one expects, following Raphael and de 
Gennes (1989), a steep rise (V - w) of the wall velocity in a small ‘critical’ 
region 6 H / H c  - (a/ l )*  before the linear regime is reached. (1 is the distance between 
dislocations .) 
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